Inter-laboratory calibration of Male's monitoring network: outlook

Kim Oanh N. T. EEM/SERD, AIT

Male' Declaration refreshment workshop Delhi, Nov. 16-18, 2010

Contents

- -
 - About the inter-lab calibration for Male' network
 - Summary of the protocol
 - Results of first 2 attempts
 - Plan for 3rd attempt

Why the inter-lab calibration?

- Data quality is the first concern in any monitoring program
- Consistency/harmonization should be reached for data compilation in a regional network involving different laboratories
- Inter-laboratory calibration is an important element of QA which is specified in Male' protocol

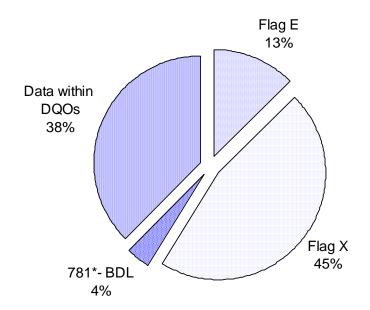
Objectives of inter-lab comparison

- To recognize the analytical precision and accuracy of the data by the participating laboratories (NIA)
- To provide an opportunity to improve data reliability/quality

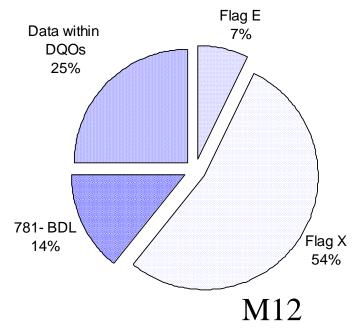
Main Activities of Inter-lab Comparison

- Prepare reference samples
- Distribute the samples
- Design and deliver a QA program to participating labs
- Participating labs analyze sample following the standard operational procedure (Male's QA/QC)
- Data acquisition and data analysis
- Reports and follow-up

Past implementation: 2007-2009

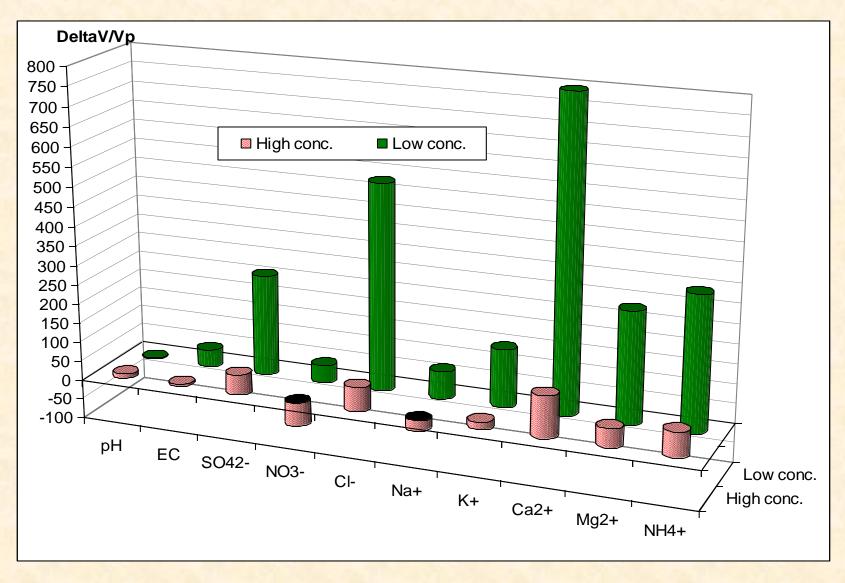

Activity	Time	
Protocol preparation	April-Sept.07	
Artificial rainwater sample preparation	Nov. 07	
First attempt	Nov-2007 - March 2008	
Second attempt	August 2008-Dec. 2008	
Sent samples to laboratories	August 2008	
Data acquisition and handling	Sept- Nov 08	
Data analysis	NovDec. 08	
Final report with recommendations	March 2009	
Dissemination	Regional refreshment WS	

3rd attempt !!!

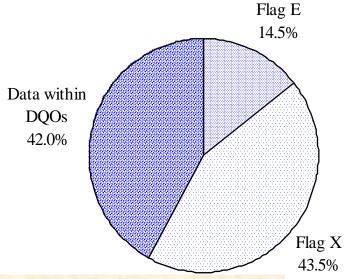

Protocol highlights

- Final protocol was finalized after communication with NIAs in Sept. 2007
 - Samples with two concentration levels: high and low
 - QA program has designed and distributed to NIA before the artificial rain sample analysis
 - A range containing analyte levels have been included in the final protocol and sent with the samples

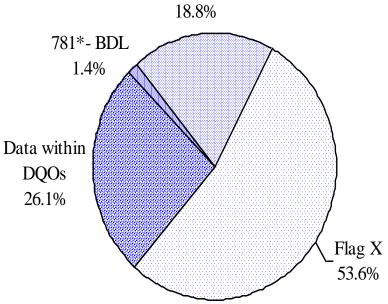
First attempt: data quality (flag data points)



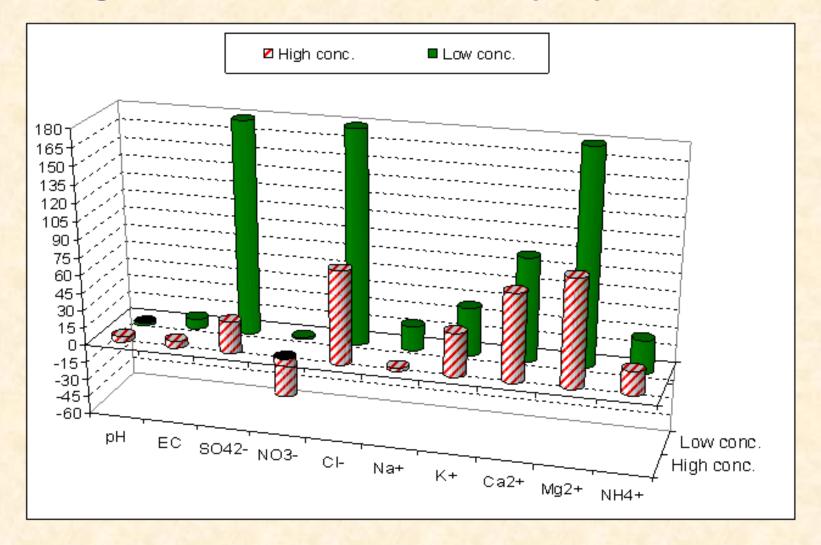
M11 Summary of data quality for high conc


Summary of the data quality for low conc.

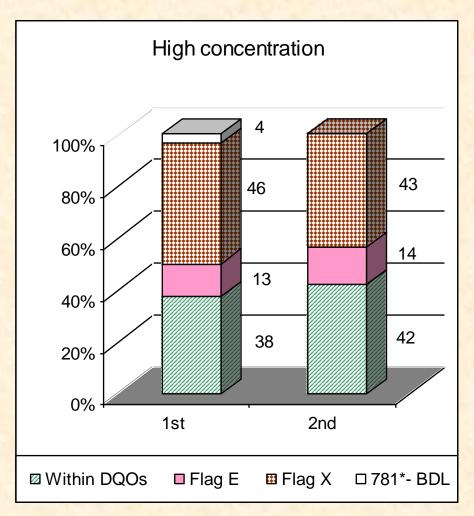
1st attempt: relative deviation between average submitted data and prepared value (%)

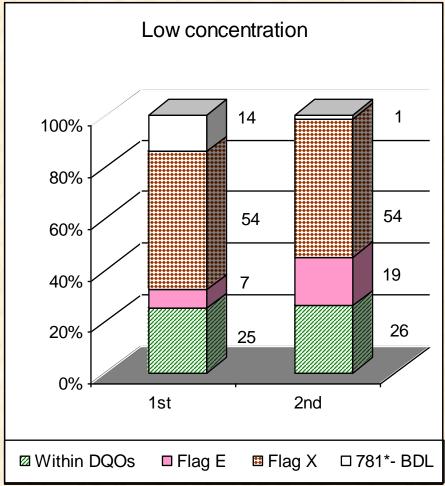


2nd attempt: data quality (flag data points)


Sample M21 (higher conc.)

Sample M22 (lower conc.)




2nd attempt: Relative deviation between average submitted data and prepared value

High conc: M21; Low conc.: M22

Overview of 1st and 2nd attempts

Summary remarks

- Strong bias for most of the parameters, especially for low concentration sample
- Results of parameters requiring less sample treatment are more accurate
- Large number of non-reported data
- Reported zero values not providing detection limits
- Low sensitivity of equipment in some labs
- A few NRIs have enough results for R1 and R2 calculation, most not submitted the R1 and R2

Recommendations for improvement

General:

- Strictly follow the Malé QA/QC Monitoring Protocol: standard operating procedures (management of apparatus, reagents, and procedure of operation)
- Consider using methods requiring less sample treatment
- Repeated analyses for precision estimate
- Fundamental factors to improve data quality
 - Properly clean the apparatus/glassware
 - Use materials/reagents of required purity with low blank
 - In house-expertise within each lab for sampling and analysis
 - In-house expertise for the data quality check especially if samples are analyzed by other institutions
 - A log book should be kept, etc.

Specific recommendations for sample analysis

- Use deionized water with conductivity < 0.15mS/m for dilution of samples and cleaning glassware
- Use the standard reference materials to evaluate the measurement methods
- Pretreatment of samples, storage and analysis time: pH and EC measurement at 25°C and as soon as possible; other parameters to be analyzed within 1 week
- Calibrate analytical instrument, develop new calibration curves for new reagent bottles, etc.
- Data quality checking and control by NIA laboratory: discard obvious erroneous data, calculate precision, Calculate R1 and R2, etc.

Plan for third attempt

- Follow the protocol
- Time to be decided: in 2011
- NIA: to check the reports of 2 past attempts and consider the recommendations to improve the results

Outline of artificial rainwater samples

Sample name	Amount of sample in a container	Bottle	Number of bottle per sample
No. M31 (high concentration) No. M32 (low concentration)	Approximately 800 mL	Poly- propylene of 1 L capacity	1 bottle for each sample

M31 and M32 contain known amount of reagents dissolved in de-ionized water

Concentration ranges in Male' artificial rain water samples

Parameter	Range	Parameter	Range
pH	4-6.5	Na ⁺	1 – 150 μmol/L
EC	0.2-10 mS/m	K ⁺	1 – 50 μmol/L
SO ₄ ²⁻	1 – 100 μmol/L	Ca ²⁺	1 – 50 μmol/L
NO ₃	1 – 100 μmol/L	Mg^{2+}	1 – 50 μmol/L
C1-	5 – 150 μmol/L	NH4 ⁺	1 – 100 μmol/L

Sending-receiving samples

- Samples to be sent to NRIs by fast delivery services
- Samples to be sent in dry ice boxes
- Dates of sending samples recorded
- Laboratories are requested to note the dates and the conditions of samples as received and communicate immediately to UNEP and AIT at soon as the samples received
- if abnormal conditions of samples occurred when received the lab should notify UNEP/AIT so that measures to be taken

Data acquisition

- Data excel template will be sent to laboratories by email and a hard copy with each sample box
- Laboratories are requested to analyze the samples as soon as possible and should be within 1 week
- NIAs are requested to send analytical results to UNEP and AIT by email and a hard copy to UNEP by fax within 7 days after the analysis completed
- Laboratories are requested to check the data quality and R1 and R2 before submitting
- AIT and UNEP follow up to get the data from NIAs

Data Analysis

- Raw data: analytical results, operators info, equipment, detection limits, etc.
- Checking for completeness of the analytical data and the info
- Check the data and compare with criteria and flag if is out of the ranges
 - Ion balance: R1 (flagged I)
 - Calculated and measured conductivity: R2 (flagged C)

Allowable Ranges for Ion Balance (R1) in Different Concentrations

Ceq + Aeq (µeq/L)	R ₁ (%)
<50	±30
50-100	±15
>100	±8

Flag I for a sample: poor ion balance agreement

Sources: QA/QC program for wet and dry deposition monitoring for Male' Declaration

Allowable Ranges for R2 for Different Ranges of EC

A measured (mS/m)	R ₂ (%)
< 0.5	± 20
0.5 - 3	± 13
> 3	± 9

Flag C for a sample: poor electrical cond. agreement

Sources: QA/QC program for wet and dry deposition monitoring for Male' Declaration

Data flagging for analytical parameters

Flag the data points against the DQO:

Bias (%) = 100 x (Analytical val – Prepared val)/(Prepared val)

- Meeting DQOs: bias within ±15%
- Flag "E": bias exceeds DQOs by a factor of 2 (\pm 15% to \pm 30%)
- Flag "X": bias exceeds DQOs more than a factor of 2, i.e. beyond $\pm 30\%$
- Analysis results for each sample, for individual parameter and based the circumstance of analysis in NIA labs

WE'd better to have no data than to have wrong data!

Thank you!